Infographic: Resurrecting Ancient Proteins

Learn the basic steps researchers take when reconstructing proteins from the past and how these biomolecules can inform engineering projects.

Written byAmber Dance
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Ancestral sequence reconstruction relies on phylogeny and statistics to infer the most likely amino acid

Scientists collect sequences from databanks of the modern versions of the protein of interest from different organisms.

Computer algorithms construct a phylogenetic tree for the proteins (Curr Opin Struct Biol, 38:37–43, 2016).

The programs can then infer the sequences that likely existed at nodes of the tree, before the modern species evolved.

Finally, the scientists order synthetic DNA and generate those proteins in the lab to use for experiments.

One way to ensure that an ASR protein behaves like the true ancestor is to resurrect and test not only the best amino acid sequence generated by the algorithms, but a few proteins with the second-best guesses, or third-best guesses, and so on. If those alternative ancestors act like the best-guess version, then researchers figure the conclusions are probably robust. Recently, evolutionary synthetic biologist Eric Gaucher ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies