Infographic: A Painful Pathway

Since the mid-2000s, the voltage-gated sodium channel NaV1.7 has emerged as a promising target for a new class of analgesics.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

© THOM GRAVES

NaV1.7 controls the passage of sodium ions into sensory neurons. Hyperactivity in NaV1.7 is associated with increased firing in pain-sensing neurons—and thus agony even in the absence of painful stimuli—while deletion of the channel appears to cause pain insensitivity.

© THOM GRAVESLike other voltage-gated sodium channels, NaV1.7 consists of four voltage-sensing domains (I to IV) surrounding a central pore through which sodium ions pass into the neuron. As a sensory neuron fires (from left to right), voltage-gated sodium channels cycle through three states: from closed to open, and finally inactivated.

INACTIVATED
For a short period following opening, the voltage-sensing domains remain open, but the pore is blocked by a positively charged particle in a ball-and-chain mechanism.

OPEN
Voltage-sensing domains open during an action potential to allow sodium ions to flow into the neuron.

CLOSED
Voltage-sensing domains pinch shut the pore when the neuron is at rest.

Many companies are working to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo