Infographic: Following the Force

Physical forces propagate from the outside of cells inward and vice versa.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Physical forces generated outside a cell can be transmitted to the cytoskeleton via cell-surface receptors known as integrins and associated protein complexes called focal adhesions. Once believed to act over only short distances, such forces are now recognized to propagate tens of microns across cells via cytoskeletal filaments such as actin stress fibers and microtubules.

Such forces can even travel all the way to the nucleus, where they may influence gene expression. On the outside of the organelle, the nuclear envelope is tethered to the actin cytoskeleton via the LINC (linker of nucleoskeleton and cytoskeleton) complex. Just inside the envelope, the nuclear lamina comprises a layer of intermediate filament proteins called lamins that are critical for force-induced changes in gene expression. Forces can also affect the translocation of certain molecules through the nuclear pore complex.

© THOM GRAVES

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex
Explore the tools available for studying histone modification.

Tools for Studying Histone Modification

Cayman Chemical Logo
An illustration of a colorful DNA molecule.

An Early Window into Biological Change and Disease Development

biomodal logo

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer