Infographic: Maternal Microbiota Has Lasting Effects on Offspring

Work in rodents shows that the bacteria living in a mother’s gut can produce immunomodulatory metabolites and influence the production of maternal antibodies—both of which can affect her offspring’s development.

| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

ABOVE: @STUDIO LINDALU, LINDA LUBBERSEN

During pregnancy, the body is subject to numerous changes. The composition of the gut microbiome shifts, metabolism changes, and the gut epithelium becomes more permeable. These alterations facilitate interactions between the immune system and gut microbiota, leading to the production of microbe-specific antibodies that are transferred across the placenta to the developing fetus, and later via the milk to the nursing offspring.

The maternal microbiota, and the external factors that shape it, influence which immunomodulatory metabolites are produced and transferred to offspring, where they support immune education and otherwise influence development, helping to protect offspring from allergic asthma, metabolic syndrome, and likely other inflammatory diseases later in life. After birth, maternally derived antibodies help newborns tolerate the bacterial colonization of their own GI tracts, while simultaneously protecting them from enteric and systemic infections.

External factors affect the composition of the maternal microbiota (for example, diet, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Carolyn A. Thomson

    This person does not yet have a bio.
  • Kathy D. McCoy

    This person does not yet have a bio.

Published In

August 2021

The Maternal Microbiome

Resident bacteria in mom’s gut may shape fetal development

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio