Infographic: Pathways from Noise to Cardiovascular Damage

Research in mice and humans points to oxidative stress and inflammation as likely drivers of noise-induced health effects such as hypertension and heart disease.

Written byThomas Münzel and Omar Hahad
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Epidemiological data have long linked exposure to noise such as aircraft, railway, or traffic sounds to increased risks of cardiovascular disease. And in recent years, experimental work has been revealing the biological mechanisms underlying that link. Specifically, researchers are finding that noise activates the brain’s limbic system, which plays a role in emotional regulation, the release of stress hormones into the blood, and controlling of the sympathetic nervous system. These stress responses can lead to cerebral and vascular inflammation, oxidative stress, and altered gene expression, sometimes culminating in endothelial dysfunction and cardiovascular disease.

Nighttime noise can disrupt sleep and cause cognitive and emotional responses via activation of the amygdala.

Disrupted sleep can also activate the autonomic nervous system and the endocrine system, leading to increases in circulating levels of stress hormones such as cortisone.

Such chronic stress can cause high cholesterol, high blood glucose, high blood pressure, increased blood viscosity, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform