Infographic: Transposable elements in cancer

Jumping genes are let loose in cancerous cells, with multiple effects on cell health.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

In healthy cells, transposable elements (TEs) are typically inactivated by methylation. But in cancer cells, these elements can become demethylated, enabling them to be expressed (1). Some transposable elements code for proteins such as endonuclease and reverse transcriptase (2). The activity of these proteins enables transposable elements to reinsert themselves into DNA, causing damage and mutations (3). TEs that are unable to reverse transcribe may still be translated into antigens, which are can subsequently be expressed on the cell surface (4). The expression of transposable elements can also activate the cell’s innate immune response in various ways, such as through DNA damage or via the presence of TE-derived RNA in the cytoplasm (5), an effect that may subsequently alter a cancer’s ability to spread.

Infographic showing transposable elements in cancer
© Lisa Clark

Read the full story.

Keywords

Meet the Author

  • Diana Kwon

    Diana is a freelance science journalist who covers the life sciences, health, and academic life.

Published In

DNA molecule inside the living cell
Spring 2023

The Cancer Code

Once dismissed as genomic noise, some noncoding sequences (and the microproteins they encode) play important roles in cancer

Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo