Is Medicine Ready for Clinical CRISPR?

Using precision genome editing to treat or prevent human disease may require several leaps of faith.

Written byJohn Parrington
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

OXFORD UNIVERSITY PRESS, AUGUST 2016CRISPR-Cas9 genome editing has the potential to transform medicine in several important ways. First, the technique makes it possible to manipulate genes in a variety of mammals to create models of human health and disease. Previously, only mice could be engineered in this way, but genome editing has made it possible to precisely modify the genomes of almost any mammal.

Because pig hearts or monkey brains are far more similar to their respective human organs than those of mice, this should have a major impact on our ability to understand the genetic basis of heart disease and various mental disorders. But such developments are likely to be controversial because of opposition by some people to experimentation on primates.

Another way that genome editing affects medicine is by facilitating the study of physiological or pathological processes in human cells in culture. Using genome editing to precisely manipulate the genomes of human cells in vitro is making it possible to identify the genes involved in normal human physiology and in various types of human disease. I discuss these and other transformative applications of CRISPR-Cas9 genome editing in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

December 2016

Traffic Cops

The structure and function of nuclear pores

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH