Janelle Ayres Explores the Ways in Which Animals Tolerate Disease

The Salk Institute researcher was one of the first to show that killing a pathogen isn’t the only way to survive an infection.

Written byAmy Schleunes
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: To work out the details of her experiments, Janelle Ayres often writes on the glass windows of her lab.
© SALK INSTITUTE

Growing up in Livermore, California, Janelle Ayres kept all kinds of pets—rabbits, birds, fish, turtles, and her two favorites, Smokey the Siberian husky and Roman the German shepherd. She dreamed of becoming a veterinarian, but learning about genetics in high school led her to study molecular and cell biology at the University of California (UC), Berkeley. She then had to choose among vet school, med school, and a PhD program. Attending a talk by Stanley Falkow, whom she calls “the godfather of microbial pathogenesis,” helped her decide to pursue microbiology. “I loved the idea of host-microbe interactions,” Ayres tells The Scientist, “and that pathogens could be having such dramatic effects on the host’s biology.”

After graduating in 2002, Ayres moved to Stanford to work with microbiologist David Schneider. ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A former intern at The Scientist, Amy studied neurobiology at Cornell University and later earned her MFA in creative writing from the University of Iowa. She is a Los Angeles–based writer, editor, and communications strategist who collaborates on nonfiction books for Harper Collins and Houghton Mifflin Harcourt, and also teaches writing at Johns Hopkins University CTY. Her favorite projects involve sharing the insights of science and medicine.

    View Full Profile

Published In

June 2020

An Infant's Bounty

Babies amass microbes that can pave the way to a healthy life

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies