Killifish Embryos Pause Development Without Consequence: Study

Contrary to popular thinking, the period of arrested development is an active state of maintaining muscle integrity.

Written byLisa Winter
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Killifish embryos that go through diapause have no ill effects later in life. © CHI-KUO HU

Rather than risk being born during the dry season when conditions are not hospitable, African killifish embryos are able to arrest their development and wait to hatch until the rainy season replenishes their pond. This can occur for a length of time that exceeds the animal’s normal lifespan with no ill effects, according to a study published today (February 21) in Science.

Diapause is the biological phenomenon that allows animals, typically insects and certain fish, to effectively hit the pause button on their lifecycle to avoid extremely adverse conditions. For African turquoise killifish (Nothobranchius furzeri), this usually occurs at the embryonic stage, allowing the fish to wait until there is sufficient water to hatch.

The team found that during diapause, cells responsible for growth suspend activity and metabolism slows, but genes that code ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Lisa joined The Scientist in 2017. As social media editor, some of her duties include creating content, managing interactions, and developing strategies for the brand’s social media presence. She also contributes to the News & Opinion section of the website. Lisa holds a degree in Biological Sciences with a concentration in genetics, cell, and developmental biology from Arizona State University and has worked in science communication since 2012.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies