Lab-Evolved E. coli Consume Carbon Dioxide

Bacteria that take in inorganic carbon could have applications in sustainable biofuels.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Researchers have engineered Escherichia coli bacteria to grow by taking in carbon dioxide, according to a paper published today (November 27) in Cell.

E. coli are normally heterotrophs—organisms that ingesting organic compounds such as glucose for food—but the new study shows that they can be turned into autotrophs that consume carbon dioxide from the atmosphere and turn it into biomass.

“I find it fundamentally amazing that an organism which evolved over billions of years to live a heterotrophic lifestyle can so quickly and completely change into an autotroph,” Dave Savage, a biochemist at University of California, Berkeley, who was not involved with the study, tells The Scientist in an email. “It suggests that metabolism is extremely malleable.”

This process of using inorganic carbon to make biomass, called carbon fixation, could be used to solve “some of the biggest challenges of humanity today,” Ron Milo, a systems biologist at the Weizmann ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo