Long-Lived Neural Stem Cells Identified in Living Mice

New, unpublished results show some of the cells produce new neurons for up to 90 days, much longer than a previously identified set of neural stem cells that only generate neurons for a month or two.

Written byAshley Yeager
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Newborn neurons (yellow, orange, and red) sit next to a neural stem cell (green). The neurons grew in the hippocampus of an adult mouse over the course of two months. COURTESY OF UNIVERSITY OF ZURICH

Neuroscientist Gregor Pilz of the University of Zurich has watched stem cells turn into neurons in the brains of young, living mice—a feat that not too long ago was considered impossible. His latest experiments add to those earlier observations, showing that mice have yet another population of self-renewing stem cells in their brains and some of those cells are much longer-lived than the first ones he documented. If confirmed, the result, which Pilz discussed today (October 22) at the Society for Neuroscience meeting in Chicago, could help reveal what happens to neurogenesis—the generation of new neurons—as animals age.

Past studies have identified different populations of neural stem cells but tracking what happens to them ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies