Long-Lived Neural Stem Cells Identified in Living Mice

New, unpublished results show some of the cells produce new neurons for up to 90 days, much longer than a previously identified set of neural stem cells that only generate neurons for a month or two.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ABOVE: Newborn neurons (yellow, orange, and red) sit next to a neural stem cell (green). The neurons grew in the hippocampus of an adult mouse over the course of two months. COURTESY OF UNIVERSITY OF ZURICH

Neuroscientist Gregor Pilz of the University of Zurich has watched stem cells turn into neurons in the brains of young, living mice—a feat that not too long ago was considered impossible. His latest experiments add to those earlier observations, showing that mice have yet another population of self-renewing stem cells in their brains and some of those cells are much longer-lived than the first ones he documented. If confirmed, the result, which Pilz discussed today (October 22) at the Society for Neuroscience meeting in Chicago, could help reveal what happens to neurogenesis—the generation of new neurons—as animals age.

Past studies have identified different populations of neural stem cells but tracking what happens to them ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley Yeager

    Ashley started at The Scientist in 2018. Before joining the staff, she worked as a freelance editor and writer, a writer at the Simons Foundation, and a web producer at Science News, among other positions. She holds a bachelor’s degree in journalism from the University of Tennessee, Knoxville, and a master’s degree in science writing from MIT. Ashley edits the Scientist to Watch and Profile sections of the magazine and writes news, features, and other stories for both online and print.

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit