Longer Days Led to Oxygen Buildup on Early Earth: Study

Researchers propose that some of the planet’s earliest photosynthesizers benefited from a slowing of the Earth’s rotation that allowed them to produce a surplus of oxygen and paved the way for more complex life.

amanda heidt
| 4 min read
A finger of purple bacteria sticks up from the bottom of a lakebed

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Purple microbial mats in the Middle Island sinkhole in Lake Huron. Small hills and “fingers” like this one in the mats are caused by gases like methane and hydrogen sulfide bubbling up beneath them.
PHIL HARTMEYER, NOAA THUNDER BAY, NATIONAL MARINE SANCTUARY

Billions of years ago, Earth lacked the oxygen-rich atmosphere that today sustains most life on the planet. How the air slowly became breathable remains an unanswered question, but in a study published yesterday (August 2) in Nature Geoscience, researchers are putting forth a novel hypothesis: that the gradually slowing rotation of the Earth, which led to longer days, allowed photosynthesizing cyanobacteria to pump more oxygen into the atmosphere than they had before.

“An enduring question in the Earth sciences has been how did Earth’s atmosphere get its oxygen, and what factors controlled when this oxygenation took place,” University of Michigan geomicrobiologist and study coauthor Gregory Dick says in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • amanda heidt

    Amanda Heidt

    Amanda was an associate editor at The Scientist, where she oversaw the Scientist to Watch, Foundations, and Short Lit columns. When not editing, she produced original reporting for the magazine and website. Amanda has a master's in marine science from Moss Landing Marine Laboratories and a master's in science communication from UC Santa Cruz.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
Explore polypharmacology’s beneficial role in target-based drug discovery

Embracing Polypharmacology for Multipurpose Drug Targeting

Fortis Life Sciences
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

The Scientist Placeholder Image

Gilead’s Capsid Revolution Meets Our Capsid Solutions: Sino Biological – Engineering the Tools to Outsmart HIV

Stirling Ultracold

Meet the Upright ULT Built for Faster Recovery - Stirling VAULT100™

Stirling Ultracold logo
Chemidoc

ChemiDoc Go Imaging System ​

Bio-Rad
The Scientist Placeholder Image

Evotec Announces Key Progress in Neuroscience Collaboration with Bristol Myers Squibb