Macrophages Physically Relay Signals Between Cell Types

Time-lapse imaging shows the immune cells transferring chemical signals during pigment pattern formation in developing zebrafish.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

CELL ESCORT: As they mature, zebrafish develop a pattern of black stripes made up of dark pigmented cells called melanophores. Researchers have now shown that organization of the pattern is achieved by the ferrying activity of immune cells called macrophages. First, xanthoblasts (orange)—precursors to yellow pigment cells residing in zebrafish skin—form vesicles (red) filled with signaling molecules at their surface (1). Then, macrophages (blue) pick up these vesicles, which remain attached to xanthoblasts by thin filaments (2). On encountering a melanophore (black), the macrophage deposits its cargo on the surface of the pigment cell (3). This long-distance communication represents an entirely new function for macrophages. ZEBRAFISH © ISTOCK.COM/MIRKO_ROSENAU

The paper
D.S. Eom, D.M. Parichy, “A macrophage relay for long-distance signaling during postembryonic tissue remodeling,” Science, doi:10.1126/science.aal2745, 2017.

Macrophages are increasingly appreciated as important mediators of many physiological processes, from homeostasis to tissue remodeling. But the recent discovery of a new role for the immune cells comes from an unexpected source: the stripes that give zebrafish their name.

Widely used as a model organism for developmental biology because the young are transparent, Danio rerio as adults have a characteristic black-and-yellow striping that runs the lengths of their bodies. “Nobody really pays much attention to the later stages” of the fish’s development, says University of Virginia biologist David Parichy. “But for years, [our lab] has worked on pigmentation and pattern formation.”

Zebrafish pigmentation is directed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Catherine Offord

    Catherine is a science journalist based in Barcelona.

Published In

May 2017

Rapid Evolution

Genetic change within populations can happen in mere generations

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo