Macrophages Physically Relay Signals Between Cell Types

Time-lapse imaging shows the immune cells transferring chemical signals during pigment pattern formation in developing zebrafish.

Written byCatherine Offord
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

CELL ESCORT: As they mature, zebrafish develop a pattern of black stripes made up of dark pigmented cells called melanophores. Researchers have now shown that organization of the pattern is achieved by the ferrying activity of immune cells called macrophages. First, xanthoblasts (orange)—precursors to yellow pigment cells residing in zebrafish skin—form vesicles (red) filled with signaling molecules at their surface (1). Then, macrophages (blue) pick up these vesicles, which remain attached to xanthoblasts by thin filaments (2). On encountering a melanophore (black), the macrophage deposits its cargo on the surface of the pigment cell (3). This long-distance communication represents an entirely new function for macrophages. ZEBRAFISH © ISTOCK.COM/MIRKO_ROSENAU

The paper
D.S. Eom, D.M. Parichy, “A macrophage relay for long-distance signaling during postembryonic tissue remodeling,” Science, doi:10.1126/science.aal2745, 2017.

Macrophages are increasingly appreciated as important mediators of many physiological processes, from homeostasis to tissue remodeling. But the recent discovery of a new role for the immune cells comes from an unexpected source: the stripes that give zebrafish their name.

Widely used as a model organism for developmental biology because the young are transparent, Danio rerio as adults have a characteristic black-and-yellow striping that runs the lengths of their bodies. “Nobody really pays much attention to the later stages” of the fish’s development, says University of Virginia biologist David Parichy. “But for years, [our lab] has worked on pigmentation and pattern formation.”

Zebrafish pigmentation is directed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

May 2017

Rapid Evolution

Genetic change within populations can happen in mere generations

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH