Macrophages Physically Relay Signals Between Cell Types

Time-lapse imaging shows the immune cells transferring chemical signals during pigment pattern formation in developing zebrafish.

Written byCatherine Offord
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

CELL ESCORT: As they mature, zebrafish develop a pattern of black stripes made up of dark pigmented cells called melanophores. Researchers have now shown that organization of the pattern is achieved by the ferrying activity of immune cells called macrophages. First, xanthoblasts (orange)—precursors to yellow pigment cells residing in zebrafish skin—form vesicles (red) filled with signaling molecules at their surface (1). Then, macrophages (blue) pick up these vesicles, which remain attached to xanthoblasts by thin filaments (2). On encountering a melanophore (black), the macrophage deposits its cargo on the surface of the pigment cell (3). This long-distance communication represents an entirely new function for macrophages. ZEBRAFISH © ISTOCK.COM/MIRKO_ROSENAU

The paper
D.S. Eom, D.M. Parichy, “A macrophage relay for long-distance signaling during postembryonic tissue remodeling,” Science, doi:10.1126/science.aal2745, 2017.

Macrophages are increasingly appreciated as important mediators of many physiological processes, from homeostasis to tissue remodeling. But the recent discovery of a new role for the immune cells comes from an unexpected source: the stripes that give zebrafish their name.

Widely used as a model organism for developmental biology because the young are transparent, Danio rerio as adults have a characteristic black-and-yellow striping that runs the lengths of their bodies. “Nobody really pays much attention to the later stages” of the fish’s development, says University of Virginia biologist David Parichy. “But for years, [our lab] has worked on pigmentation and pattern formation.”

Zebrafish pigmentation is directed ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

May 2017

Rapid Evolution

Genetic change within populations can happen in mere generations

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies