Making Micromotors Biocompatible

Researchers are developing potent ways to fuel and control the movement of micromotor devices.

Written byJyoti Madhusoodanan
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

TWO-FACED TUMBLE: Silica microcapsules are coated on one half with magnetic iron particles and the other half with an enzyme that breaks down urea in human fluids to cause chemo-osmotic propulsion. The capsules can deliver cargo such as drugs to target sites.REDRAWN FROM SANCHEZ ET AL., ACS NANO, DOI:10.1021/acsnano.5b08067

In the 1966 film Fantastic Voyage, Czech scientist and defector Jan Benes discovers a way to miniaturize matter, enabling his colleagues to navigate a pint-size submarine through his blood vessels and into his own brain to destroy a lethal blood clot. Today, this sci-fi gem is edging closer to reality. With the help of microfabrication, researchers are beginning to learn how to deploy tiny, cellular-scale machines into biological systems.

Micromotors of all shapes and sizes are being developed to sense environmental toxins in air or water, deliver drugs to target tissues, and perform surgical procedures at the single-cell level. What complicates their use in living organisms or cell-culture systems, however, is that their tiny size leaves them struggling against fluid forces. While a large ship ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

June 2016

Found in Translation

Some supposedly nonfunctional RNA molecules encode functional peptides

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies