Massive RNAi Screens Probe for Genes Important to Cancer

Two freely available databases include data on hundreds of human cancer cell lines.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A "hairball" of genetic interactionsNOVARTISIn what appear to be the largest RNAi screening efforts in cancer to date, two groups of scientists have tamped down the expression of thousands of genes in hundreds of human cancer cell lines. Their results, published today (July 27) in two Cell papers and made freely available to researchers, confirm the roles of the usual genetic suspects in cancer and identify new potential therapeutic targets.

The Scientist spoke with the lead author of one of the studies, Rob McDonald, a senior investigator at Novartis Institutes for BioMedical Research, about his team’s Project DRIVE endeavor. The study systematically knocked down more than 7,800 genes in nearly 400 cell lines. The other project, by researchers from the Broad Institute and Dana Farber Cancer Institute, looked for genetic dependences for cancer growth or survival among 501 cell lines.

The Scientist: What is the goal of Project DRIVE?

Rob McDonald: Very simply, it was to identify new therapeutic targets across a variety of cancer types that would hopefully impact patient care.

TS: How did you go about it?

RM: It really started with a foundational tool we have here at Novartis called the cancer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies