Maternal Vaginal Fluids Mimic Microbe Transfer of Vaginal Birth

Swabbing infants born by Cesarean-section with a gauze harboring their mother’s vaginal fluids made their skin and gut microbiota more closely resemble that of vaginally born babies.

alejandra manjarrez
| 4 min read
a newborn C-section baby in the gloved hands of doctors

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: An infant delivered via C-section
© ISTOCK.COM, 1905HKN

Babies born by C-section carry an increased risk of immune and metabolic disorders later in life, which studies have suggested may be associated with the communities of microbes on and in their bodies at the time of birth. The diversity of microbes hosted by Cesarean-born babies differs from that of those born by vaginal delivery, a difference that may arise because vaginally born neonates are colonized by microbes as they pass through the birth canal. According to a paper published June 17 in Med, this natural colonization event could be mimicked by swabbing Cesarean-delivered newborns with a gauze soaked with their mothers’ vaginal fluids. The skin and gut bacteria of C-section babies treated with this procedure were more similar to vaginally delivered babies, at least during their first year of life, than those not exposed to vaginal fluids.

A pilot study by ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez, PhD

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo