May the Force Be with You

The dissection of how cells sense and propagate physical forces is leading to exciting new tools and discoveries in mechanobiology and mechanomedicine.

Written byNing Wang
| 11 min read

Register for free to listen to this article
Listen with Speechify
0:00
11:00
Share

CELL SCAFFOLDING: This composite super-resolution microscopy image shows actin (on a scale from blue to magenta/red, for earlier to later time points of imaging) in a living pig kidney cell.© TALLEY LAMBERT/SCIENCE SOURCE

It is well known that some human diseases are related to changes in mechanical properties of tissues. In patients suffering from arteriosclerosis, the arteries lose some of their elasticity and become thicker and stiffer. In liver or lung fibrosis, excessive fibrous connective tissue has a similar hardening effect on those organs. And patients with aneurysms have balloon-like bulges in their blood vessels that, if left untreated, can expand under pressure until they burst.

Of course, mechanical properties and forces aren’t just important in disease, but in health as well. Almost all living cells and tissues exert and experience physical forces that influence biological function. The magnitudes of those forces vary among different cell and tissue types, as do cells’ sensitivities to changes in magnitudes, frequencies, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH