Metabolomics Data Under Scrutiny

Out of 25,000 features originally detected by metabolic profiling of E. coli, fewer than 1,000 represent unique metabolites, a study finds.

Written byAshley P. Taylor
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

ISTOCK, LUISMMOLINAMetabolomics screens can detect thousands of different compounds in a given sample, but contrary to the assumptions of numerous studies, not every detected compound represents a unique metabolite—far from it, according a to a study published today (September 15) in Analytical Chemistry.

Metabolomics researchers Gary Patti and Nathaniel Mahieu of Washington University in St. Louis report that out of about 25,000 compounds detected in E. coli by liquid-chromatography mass-spectroscopy (LC/MS), 90 percent were not unique metabolites. Rather, the same metabolite, fragmented or with chemical additions, is spotted multiple times, a phenomenon known as degeneracy. A second analysis, designed to weed out contaminants and artifacts in addition to degeneracy, confirmed just three percent of the observed compounds are bona fide, unique metabolites.

“This study confirms what I think a lot of people in the metabolomics world have known,” says University of Michigan endocrinologist Charles Burant, who was not involved in the work. “All these features that we see during mass spectroscopy, really, a lot of them are sort ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery