Microbes in Human Fetuses Spur Immune Development

Researchers identify live bacteria in fetal guts, skin, lungs, and placentas that activate memory T cells, indicating that early exposure to microbes could help educate the developing immune system.

Written byAbby Olena, PhD
| 4 min read
A scanning electron micrograph of a human fetal gut, pseudocolored in yellow and blue

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: A pseudocolored scanning electron micrograph of a 14-week-old human fetal intestine
THET TUN AUNG AND BENOIT MALLERET, NUS YONG LOO LIN SCHOOL OF MEDICINE

Update (November 24): In a letter to Cell published today, a group of researchers argues that Ginhoux and colleagues' study did not adequately control for the possibility of contamination of samples, and that better-designed studies have found no evidence that fetuses are colonized with microbes. The study authors defend their methods in a separate letter published today.

Over the last decade, scientists have shown that the fetal immune system comes online much sooner than was initially thought, but what type of antigens train nascent immune cells and how this affects subsequent development remain open questions. In a study published June 1 in Cell, researchers determined that second-trimester human fetuses harbor live bacteria in tissues all over their bodies that can activate fetal T cells.

“What is ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies