Microbial Fossils Found in 3.4-Billion-Year-Old Subseafloor Rock

The material, now part of an African mountain range, bolsters the idea that hydrothermal veins supported early forms of life.

ruth williams
| 3 min read
3.42-billion-year-old chert veins at Barberton Greenstone Belt

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: 3.42-billion-year-old chert veins (dark gray) in rocks at the Barberton Greenstone Belt in South Africa
AXEL HOFMANN

Researchers have discovered fossilized cell remnants in rock that roughly 3.4 billion years ago was a hydrothermal vein—a crack in bedrock containing superheated water. The microfossils, described today (July 14) in Science Advances, support the theory that such veins were breeding grounds for Earth’s earliest lifeforms, as well as the idea that primitive microbes were methane producers.

“On the basis of very detailed chemical analyses [the] filamentous . . . structures are interpreted as methane-cycling microbes,” Malcolm Walter, an astrobiologist at the Australian Centre for Astrobiology who was not involved in the study, writes in an email to The Scientist. “This is a significant addition to the very rare early Archean microfossil record.”

Hydrothermal veins in rock contain magma-heated ground water that rises to the surface as hot springs or geysers on land ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with lipid nanoparticles

Thermo Fisher Logo
Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide