Microbial Fuel Factories

An archaeon takes the first steps toward making a liquid fuel from carbon dioxide and hydrogen gas.

Written byKate Yandell
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

ONE CHILL MICROBE: The archaeon Pyrococcus furiosus normally thrives at 100 °C. Culturing it at a lower temperature can minimize metabolic processes that may interfere with engineered pathways.FULVIO314/WIKIMEDIA COMMONS

The paper M.W. Keller et al., “Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide,” PNAS, 110:5840-45, 2013. The finding Genetically engineered microorganisms could be used to produce fuels and industrial products, but some microbes’ metabolisms get in the way, degrading or blocking synthesis of the products scientists want. By keeping an extreme heat-loving microorganism below its accustomed temperature, University of Georgia biochemist Michael Adams and colleagues deactivated many of the hyperthermophile’s own metabolic processes and engineered a pathway that could ultimately be manipulated to produce liquid fuel. The methods Adams and colleagues took five genes from one archaeon (Metallosphaera sedula) that uses hydrogen gas as an energy source to incorporate carbon dioxide into organic compounds, and inserted those genes into ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH