Microbial Mediators

Researchers show that symbiotic bacteria can help hyenas communicate with one another.

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

FLICKR, LAERTESCTBSymbiotic bacteria that populate the scent glands of hyenas seem to aid chemical communication among the scent-marking mammals, according to a study published in the Proceedings of the National Academy of Sciences today (November 11). Michigan State University’s Kevin Theis and his colleagues, who had previously shown that hyena social groups harbor unique communities of bacteria that produce signature smells, used next-generation sequencing to investigate the microbes found in the scent glands of wild spotted and striped hyenas. They found that the bacterial communities were dominated by fermentive species and that microbial profiles between spotted and striped hyenas differed.

“It’s an extremely important study showing the role of bacteria mediating interactions between mammals,” Penn State University’s David Hughes, who was not involved in the work, told LiveScience. “Only now are we discovering the role of what we think of as inconsequential passengers—the bacteria—and how important they are.”

Theis told Nature that his team was somewhat surprised by the bacterial communities it found. “The diversity of the bacteria is enough to potentially explain the origin of these [scent] signals,” he said.

In their paper, the researchers suggested that their bacteria-based fermentation hypothesis of chemical communication may “prove broadly applicable among scent-marking mammals.”

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tracy Vence

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio