Microfluidic Chambers Trigger Sleep in C. elegans

This newly described behavior occurs spontaneously, but can be modulated by food availability, temperature, and the size of the chambers.

Written byAlejandra Manjarrez, PhD
| 4 min read
c. elegans sleep microfluidics

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: C. elegans inside microfluidic chambers
DANIEL GONZALES AND BO FAN

Typically, the worm Caenorhabditis elegans falls asleep after it experiences stress or hours of swimming. In a recent study, scientists observed another sleep trigger: being confined to a microfluidic chamber. As such devices are widely used to analyze different worm behaviors, the authors caution that the sleep induction could interfere with data interpretation. The results were published November 6 in Nature Communications.

“In our field, microfluidic chambers have become very commonly used, and they are valuable tools for precise environmental control and for neural imaging . . . but what this study highlights is that we are significantly impacting the physiology and behavior of these animals by confining them in such a way,” says Cheryl Van Buskirk, a geneticist at California State University in Northridge. Van Buskirk studies sleep and stress response in worms, but she was not involved in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies