Mining Bacterial Small Molecules

As much as rainforests or deep-sea vents, the human gut holds rich stores of microbial chemicals that should be mined for their pharmacological potential.

| 10 min read

Register for free to listen to this article
Listen with Speechify
0:00
10:00
Share

animate4.com ltd. / Photo Researchers, Inc.

Companies spend huge resources going to the far reaches of the Earth to search for the next blockbuster. But we need look no further than our own intestines, which are populated with thousands of bacterial species that are constantly producing and releasing small, bioactive molecules.

Small molecules—the bread and butter of pharmaceutical companies—are compounds of low molecular weight (under 3,000 daltons) and diverse chemical composition. Examples of such molecules are the steroid and small-peptide hormones of higher organisms, with a molecular weight around 300 daltons, which have many important biological functions. The term hormone (from the Greek: excite, arouse) was coined in 1905 by British physiologist. 1 Ernest Starling to describe the chemical messengers produced in an organ or gland of the body that travel ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • L. Caetano M. Antunes

    This person does not yet have a bio.
  • Julian E. Davies

    This person does not yet have a bio.
  • B. Brett Finlay

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio