Modifying the Microbiome In Vivo, One Species or Gene at a Time

To manipulate the microbiome, researchers engineered a CRISPR delivery system that precisely targets bacteria in the mouse gut.

Niki Spahich headshot
| 4 min read
Researchers target E. coli in the mouse gut
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Over the past 25 years, researchers have learned a lot about our microbial companions and generated a mountain of data thanks to advances in sequencing technology. But researchers still lack effective methods to alter the microbiome based off of this information. Introducing new microbes via supplements or fecal transplants has shown little success because new bacterial residents have a hard time grabbing a foothold in a crowded, established community. Killing pathogens with antibiotics also takes benign bacteria as collateral damage, and can lead to drug resistance in survivors.

“There's a lack of precision in terms of how we are able to manipulate the microbiome,” said Peter Turnbaugh, associate professor at the University of California, San Francisco, whose research team recently developed a microbiome-altering system using CRISPR-Cas9 editing technology. “That really motivated this sort of search for a tool that we could use to make more specific changes.”

In vitro, scientists ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Niki Spahich headshot

    Niki Spahich, PhD

    With a PhD in Genetics and Genomics, Niki Spahich channels her infectious disease research and science communication experiences into her role as the manager of The Scientist's Creative Services team.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours