Molecular Multitasker

Scientists create a way to isolate mRNA from a single living cell within a tissue.

Written byAnna Azvolinsky
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

TIVA TAG: cell-penetrating peptide (CPP), FRET fluorophores (Cy3 and Cy5), photocleavable linker (PL), uracil (U), adenine (A)© GEORGE RETSECKNeighboring cells with the same morphology in the same tissue—neurons in the brain, for example—may be unique in their mRNA and protein-expression profiles. While cell individuality is increasingly appreciated, current whole-transcriptome techniques cannot analyze a single cell within a tissue without perturbing the cell’s neighbors or having to use fixed tissue samples.

Cleverly combining several molecular tools into a single, multitasking molecule, neurobiologist James Eberwine and chemist Ivan Dmochowski, both at the University of Pennsylvania, created the transcriptome in vivo analysis (TIVA) tag. It’s composed of a light-activated hairpin oligonucleotide that can enter a cell and capture its mRNA profile without contamination from neighboring cells. “The TIVA tag in its closed hairpin structure looks like a pocket knife with tools folded inside. Upon photoactivation, TIVA opens up and the RNA capture strand is revealed,” says Dmochowski.

Before opening the tag’s hairpin loop, fluorescence resonance energy transfer (FRET) between dyes attached to the RNA hairpin confirms the presence of the tag inside the cell. Because many cells in a tissue might take up tags, the trick to analyzing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • head shot of blond woman wearing glasses

    Anna Azvolinsky received a PhD in molecular biology in November 2008 from Princeton University. Her graduate research focused on a genome-wide analyses of genomic integrity and DNA replication. She did a one-year post-doctoral fellowship at Memorial Sloan Kettering Cancer Center in New York City and then left academia to pursue science writing. She has been a freelance science writer since 2012, based in New York City.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH