Monitoring Mutations with Microfluidics

A device dubbed the “mother machine” enables real-time observation of mutagenesis in single bacterial cells.

Written byRuth Williams
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Bacteria in the mother machine showing replication mutationsMARINA ELEZ AND JEAN OLLIONMutations are the driving force for variation and evolution of life, yet most of what is known about mutational dynamics is based on inference from indirect measures. Now, a group of researchers in France have used a microfluidic device that allows the simultaneous observation of hundreds of individual Escherichia coli cells as they divide and mutate over multiple replication cycles. The team reports the findings from the device, called the “mother machine,” in Science today (March 15).

“Mutations are so central to biology,” Martin Ackermann, a molecular microbial ecologist at the Swiss Federal Institute of Technology in Zurich who was not involved in the study, writes in an email to The Scientist. “On one hand, they are the basis of evolutionary innovation and of the diversity of life on our planet. On the other hand, they are the root of some of the most pressing medical problems that we face. . . . Understanding the timing at which mutations occur and the effects they have on organisms is thus a central goal in biology. This study represents a large step towards this goal.”

Stephan Uphoff, a bacterial mutagenesis researcher at the University of Oxford who was also not involved in the study, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH