More CRISPR Improvements

Researchers at the University of California, Berkeley, boost the CRISPR/Cas9 system’s gene-editing success rate in short pieces of DNA.

Written byJef Akst
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

FLICKR, NIH IMAGE GALLERYCRISPR/Cas9 is efficient compared to previous gene-editing techniques, but there’s still plenty of room for improvement. CRISPR is less efficient when employing the cellular process of homology-directed DNA repair (HDR), as opposed to nonhomologous end joining. Now, Jacob Corn, the scientific director of the Innovative Genomics Initiative at the University of California, Berkeley, and his colleagues have improved the success rate of homology-directed repair following CRISPR/Cas9 –induced breaks to 60 percent.

“We have found that Cas9-mediated HDR frequencies can be increased by rationally designing the orientation, polarity and length of the donor ssDNA [single-stranded DNA] to match the properties of the Cas9-DNA complex,” the researchers wrote in their paper, published last week (January 20) in Nature Biotechnology. “We also found that these donor designs, when paired with tiled catalytically inactive dCas9 molecules [which bind to DNA without cleaving it], can stimulate HDR to approximately 1%, almost 50-fold greater than donor alone.”

“Our data indicate that Cas9 breaks could be different at a molecular level from breaks generated by other targeted nucleases, such as TALENS and zinc-finger nucleases, which suggests that strategies like the ones we are using can give you more efficient repair of Cas9 breaks,” ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies