Mosquitoes Add Bacteria to Water to Help Larvae Grow: Preprint

Pregnant mosquito females deploy the microbe Elizabethkingia to speed larval growth; the larvae, in turn, help the bacteria outcompete other strains.

Written byNatalia Mesa, PhD
| 4 min read
Mosiquito with white stripes and red abdomen on human skin
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Aedes aegypti mosquitoes, carriers of many devastating diseases including dengue, Zika, and yellow fever, thrive in a variety of environments. While particularly pesky in jungles and forests, they even flourish in cities, laying eggs in nutrient-poor pools of standing rainwater. This has left scientists wondering: how is it that they survive so well in urban areas?

A preprint published on February 23 in bioRxiv shows that female mosquitoes might be able to sculpt the environment where they lay their eggs, depositing growth-boosting bacteria in the water alongside their young. The researchers say that the findings might help us develop new ways to control the disease-bearing pests.

“We’ve always wondered how mosquitoes manage to get enough nutrients from such a poor environment,” says study author Marcelo Lorenzo, a biologist at the René Rachou Institute in Minas Gerais, Brazil.

Previous research has shown that adult mosquitoes have a symbiotic relationship with some ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • A black and white headshot

    As she was completing her graduate thesis on the neuroscience of vision, Natalia found that she loved to talk to other people about how science impacts them. This passion led Natalia to take up writing and science communication, and she has contributed to outlets including Scientific American and the Broad Institute. Natalia completed her PhD in neuroscience at the University of Washington and graduated from Cornell University with a bachelor’s degree in biological sciences. She was previously an intern at The Scientist, and currently freelances from her home in Seattle. 

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies