Most Gut Microbes Can Be Cultured

Contrary to the popular thought that many species are “unculturable,” the majority of bacteria known to populate the human gut can be grown in the lab, scientists show.

Written byJyoti Madhusoodanan
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

“Environmental C. difficile spores are highly transmissible for long periods after they are shed, commonly transmit within a local environment but also have the potential to spread rapidly over long distances,” the authors wrote in their paper.WIKIMEDIA, CJC2NDMicrobes thrive in nearly every Earthly environment, but surprisingly few are known to flourish when grown in labs. As a result, studies of the human gut microbiome have primarily utilized genomic approaches. By combining microbial culture experiments with genomic approaches, researchers from Wellcome Trust Sanger Institute and their colleagues have now shown that, contrary to the widely held assumption that most bacteria are “unculturable,” most known gut microbial species can be grown and preserved in vitro. The results, published today (May 4) in Nature, reveal that many “unculturable” gut bacteria belong to novel groups, and nearly 60 percent of them form spores in order to survive outside the human body.

“This is really an excellent study, it covers all the bases and makes an important contribution,” said James Oliver, a professor of microbiology at the University of North Carolina at Charlotte, who was not involved with the study.

To assess how much of the human gut microbiota could be cultured, the Sanger Institute’s Trevor Lawley and colleagues began with fresh fecal samples from six healthy individuals. The researchers sequenced the samples to identify bacterial diversity, grew bacteria from the samples on plates containing a broad-range growth medium called YCFA, and then compared the genomic data from the original samples to that from species that grew in the petri dishes. The two shared 72 percent of their genomic sequences, and sequences from the cultured bacterial colonies ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH