Moving Target

New mass spectrometry–based techniques are blurring the lines between discovery and targeted proteomics.

Written byNicholette Zeliadt
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© ITSDESIGNNET/ISTOCKPHOTO.COMThe complex, ever-changing multitude of proteins present in a cell or tissue at any given time, referred to as the proteome, is difficult to capture and describe. Molecular biologists have a variety of tools at their disposal to study proteins, but arguably none is more powerful for the comprehensive analysis of proteins present in a complex sample than mass spectrometry.

Traditionally, researchers have used one of two mass spec–based approaches to tease apart the complexities of the proteome: a discovery-based strategy to identify as many proteins as possible, and a targeted approach to accurately quantify a few select proteins of interest. Regardless of the method used, researchers typically begin by chopping up the proteins in their sample using enzymes that slice them at specific amino acid sequences into peptides of about 8–22 amino acids, depending on the enzyme used. The resulting peptides are then separated by liquid chromatography and loaded, as they elute, into a mass spectrometer, which converts them to ions in a gas phase. The instrument measures the mass-to-charge (m/z) ratios of the ions and creates mass spectra that report the abundance of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 

Products

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery