Muscle Disease Gene Identified in Fish

Scientists discover gene behind an inherited muscle disorder by studying zebrafish embryos.

Written byEd Yong
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Skeletal muscleWIKIPEDIA, JAGIELLONIAN UNIVERSITY MEDICAL COLLEGEIf you prod a zebrafish embryo, it will normally twitch its tail and try to escape. By watching embryos that wouldn’t twitch properly, a team of scientists has discovered that a gene called STAC3 is the cause of a rare inherited muscle disorder called Native American myopathy (NAM). The team also showed that STAC3 plays an important and previously unrecognized role in muscle contractions.

“We studied this fish and, lo and behold, we found a gene that causes a really nasty human disease. I find it really gratifying,” said John Kuwada from the University of Michigan, who led the study. “It shows that this kind of research with model systems can be quite beneficial.”

“It’s a creative approach,” said Filippo Santorelli, a myopathy researcher at Stella Maris Foundation Research Hospital in Pisa, Italy, who was not involved in the study. Disease genes are usually discovered in humans and then studied in animal models, but this study did the opposite. “It’s an elegant example of ‘reverse evolutionary genetics.’”

Kuwada’s team bred a diverse range of mutant zebrafish, then checked for embryos with obvious motor problems—an intensive process involving eight scientists ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH