Mysterious Mechanisms of Cardiac Cell Therapy

Injections of progenitor cells into damaged rat hearts may improve function, but not because the implants themselves are creating new muscle.

kerry grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIPEDIA, DANALACHEIn numerous clinical trials, researchers have injected patients with various types of progenitor cells to help heal injured hearts. In some cases, subjects have ended up with better cardiac function, but exactly how has been a subject of disagreement among scientists. According to study on rats published this week (February 2) in Circulation Research, the introduced cells themselves don’t do the job by proliferating to create new muscle.

“These cells do not become adult cardiac myocytes,” said study coauthor Roberto Bolli, a cardiac cell therapy researcher at the University of Louisville School of Medicine. “So the mechanism is clearly a paracrine action, where the cells release ‘something’ which makes the heart better. And the million-dollar question now is, ‘What is the something?’”

Bolli’s team investigated the fate of so-called c-kit+ cells, progenitors harvested from the heart and named for the presence of a particular kinase. These cells have been the source of a long debate about their role in building cardiac muscle, with some studies finding no evidence of them producing new cardiomyocytes in vivo and others concluding that, if the conditions are right, c-kit cells do indeed make heart muscle.

C-kit cells ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Share
TS Digest January 2025
January 2025, Issue 1

Why Do Some People Get Drunk Faster Than Others?

Genetics and tolerance shake up how alcohol affects each person, creating a unique cocktail of experiences.

View this Issue
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino
New Approaches for Decoding Cancer at the Single-Cell Level

New Approaches for Decoding Cancer at the Single-Cell Level

Biotium logo
Learn How 3D Cell Cultures Advance Tissue Regeneration

Organoids as a Tool for Tissue Regeneration Research 

Acro 

Products

Sapient Logo

Sapient Partners with Alamar Biosciences to Extend Targeted Proteomics Services Using NULISA™ Assays for Cytokines, Chemokines, and Inflammatory Mediators

Bio-Rad Logo

Bio-Rad Extends Range of Vericheck ddPCR Empty-Full Capsid Kits to Optimize AAV Vector Characterization

Scientist holding a blood sample tube labeled Mycoplasma test in front of many other tubes containing patient samples

Accelerating Mycoplasma Testing for Targeted Therapy Development

An illustration of different-shaped bacteria.

Leveraging PCR for Rapid Sterility Testing