Natural Opioids Linked to Chronic Pain

The body’s own pain-quelling system may be at the root of chronic pain and symptoms of opioid withdrawal, according to a new study in mice.

Written byJef Akst
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, WOODLEYWONDERWORKSWhen the body suffers an acute injury, it releases natural opioid compounds that have an immediate analgesic effect, making painful accidents much more tolerable. But that pain-reducing system may be a double-edged sword, according to a mouse study published today (September 19) in Science: the process appears to switch a natural opioid receptor into a chronically “on” position; flipping it back “off” leads to a resurgence of pain in the animals, even months after the initial injury. Moreover, the pain behaviors that resurfaced when the receptor was turned off looked strikingly like those associated with opioid withdrawal.

“You have the same system, the same structure, involved in both the effect of analgesia—in reducing pain sensation—and in opioid dependence and chronic pain,” said neurobiologist Flaminia Pavone of the Cell Biology and Neurobiology Institute in Italy, who was not involved in the work. “[It’s] a paradoxical effect that can lead to more sensitivity to pain.”

Chronic pain can arise following acute injuries. Chronic back pain, for example, is often preceded by lower back injuries. When and why acute pain is translated into chronic pain, however, is largely unknown. Sensory neurobiologist Bradley Taylor from the University of Kentucky Medical Center and his colleagues wondered whether the answer might lie in the body’s mechanisms for controlling pain in the first place. “We know that the body ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Golden geometric pattern on a blue background, symbolizing the precision, consistency, and technique essential to effective pipetting.

Best Practices for Precise Pipetting

Integra Logo
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad

Products

Labvantage Logo

LabVantage Solutions Awarded $22.3 Million U.S Customs and Border Protection Contract to Deliver Next-Generation Forensic LIMS

The Scientist Placeholder Image

Evosep Unveils Open Innovation Initiative to Expand Standardization in Proteomics

OGT logo

OGT expands MRD detection capabilities with new SureSeq Myeloid MRD Plus NGS Panel