Natural Opioids Linked to Chronic Pain

The body’s own pain-quelling system may be at the root of chronic pain and symptoms of opioid withdrawal, according to a new study in mice.

Written byJef Akst
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

FLICKR, WOODLEYWONDERWORKSWhen the body suffers an acute injury, it releases natural opioid compounds that have an immediate analgesic effect, making painful accidents much more tolerable. But that pain-reducing system may be a double-edged sword, according to a mouse study published today (September 19) in Science: the process appears to switch a natural opioid receptor into a chronically “on” position; flipping it back “off” leads to a resurgence of pain in the animals, even months after the initial injury. Moreover, the pain behaviors that resurfaced when the receptor was turned off looked strikingly like those associated with opioid withdrawal.

“You have the same system, the same structure, involved in both the effect of analgesia—in reducing pain sensation—and in opioid dependence and chronic pain,” said neurobiologist Flaminia Pavone of the Cell Biology and Neurobiology Institute in Italy, who was not involved in the work. “[It’s] a paradoxical effect that can lead to more sensitivity to pain.”

Chronic pain can arise following acute injuries. Chronic back pain, for example, is often preceded by lower back injuries. When and why acute pain is translated into chronic pain, however, is largely unknown. Sensory neurobiologist Bradley Taylor from the University of Kentucky Medical Center and his colleagues wondered whether the answer might lie in the body’s mechanisms for controlling pain in the first place. “We know that the body ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Jef (an unusual nickname for Jennifer) got her master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses. After four years of diving off the Gulf Coast of Tampa and performing behavioral experiments at the Tennessee Aquarium in Chattanooga, she left research to pursue a career in science writing. As The Scientist's managing editor, Jef edited features and oversaw the production of the TS Digest and quarterly print magazine. In 2022, her feature on uterus transplantation earned first place in the trade category of the Awards for Excellence in Health Care Journalism. She is a member of the National Association of Science Writers.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH