Neuron-Released Protein Can Set Off Inflammation: Study

Research in mice suggests that moderating nerve activity with drugs or electrical pulses could modify tissue immune responses, curtailing the chronic pain often associated with inflammatory conditions.

marcus a. banks
| 3 min read
illustration of a blue neuron lit with red

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, BLUEBAY2014

The release of a protein called HMGB1 from neurons can cause inflammation, according to a study published August 17 in PNAS. The researchers say this shows that neurons play an important role in initiating the immune response to injury and infection, and ushers in new ways of treating otherwise drug-resistant kinds of pain.

“There are a lot of cells that theoretically could use HMGB1 and probably do use HMGB1 for signaling. What’s interesting is that it’s involved in the nervous system,” notes David Pisetsky, an immunologist at the Duke University School of Medicine in North Carolina who studies the protein but was not involved in the new work. Pisetsky says he also thinks the result portends an increased focus on nerves for reducing immune-related pain.

Inflammation—an immune response characterized by heat, pain, redness, and swelling—helps the body repair tissues after infection or injury, as it assists ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • marcus a. banks

    Marcus A. Banks

    Marcus is a science and health journalist based in New York City. He graduated from the Science Health and Environmental Reporting Program at New York University in 2019, and earned a master’s in Library and Information Science from Dominican University in 2002. He’s written for Slate, Undark, Spectrum, and Cancer Today.

Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

Enhancing Therapeutic Antibody Discovery with Cross-Platform Workflows

sartorius logo
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo

Products

Photo of a researcher overseeing large scale production processes in a laboratory.

Scaling Lentiviral Vector Manufacturing for Optimal Productivity

Thermo Fisher Logo
Discover a serum-free way to produce dendritic cells and macrophages for cell therapy applications.

Optimizing In Vitro Production of Monocyte-Derived Dendritic Cells and Macrophages

Thermo Fisher Logo
Collage-style urban graphic of wastewater surveillance and treatment

Putting Pathogens to the Test with Wastewater Surveillance

An illustration of an mRNA molecule in front of a multicolored background.

Generating High-Quality mRNA for In Vivo Delivery with Lipid Nanoparticles

Thermo Fisher Logo