Neurons Firing Together Generate Spontaneous Pain

Abnormal sympathetic neuron growth leads to simultaneous activation of clusters of sensory neurons, causing the difficult-to-treat sensation.

abby olena
| 4 min read
Rounded red and green fluorescent cells are visible on a light and dark gray background
Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Spontaneous pain arises suddenly, without a clear trigger, and can feel like shooting, stabbing, burning, or electric shocks. It’s a common issue for people who have chronic pain and, because it lacks an external stimulus, difficult to treat. In a study published November 8 in Neuron, researchers link spontaneous pain in mice to coordinated firing of nonadjacent neurons in the dorsal root ganglia (DRG), which are collections of sensory neuron cell bodies just outside the spinal cord. The study authors report that this so-called cluster firing is driven by abnormal sprouting of sympathetic nerves into the DRG, which happens after injury.

“These paroxysms of spontaneous pain can really be debilitating. Because they’re totally unpredictable, there’s nothing a person can do to avoid them, so they cause enormous suffering and anxiety,” says Edgar Walters, who studies chronic pain at the University of Texas Health Science Center at Houston and did not ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • abby olena

    Abby Olena, PhD

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo