Newly Found Proteins Stop Fungal “Bleeding”

Mechanically sensitive proteins called gellins sense and respond to protoplasm flowing out of severed hyphae, quickly sealing up injuries in these root-like structures of fungi.

Written byViviane Callier
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Phycomyces blakesleeanus
JUDI THOMAS, MISSOURI MYCOLOGICAL SOCIETY

Mycelium is the fabric of fungal populations: fungi produce thread-like roots called hyphae, which branch and fuse with one another to form a vast, interconnected network—the mycelium. It allows fungi to grow rapidly, transport nutrients, and even share information about the local environment over long distances. The network is also vulnerable; a wound could lead to catastrophic bleeding of protoplasm that can lead to death. While some fungal species separate their filaments into compartments with septal walls that can limit leakage, other fungi do not make any walls, and mycologists haven’t known how they respond to an injury.

Now, a team at the National University of Singapore has discovered their secret: large, mechanosensitive proteins called gellins that have not been described before. When a hyphal filament is injured, the pressurized liquid protoplasm inside the hyphae gushes out. Immediately, gellins inside the hyphae respond ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Viviane was a Churchill Scholar at the University of Cambridge, where she studied early tetrapods. Her PhD at Duke University focused on the role of oxygen in insect body size regulation. After a postdoctoral fellowship at Arizona State University, she became a science writer for federal agencies in the Washington, DC area. Now, she freelances from San Antonio, Texas.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform