Nixing NETs to Prevent Metastasis

Researchers discover that neutrophil extracellular traps help cancers spread, and design enzyme-loaded nanoparticles to destroy them.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A neutrophil casting its NET (right) in response to cancer cells.PARK ET AL, SCIENCE TRANSLATIONAL MEDICINE (2016)Tumor cells undergoing metastasis prompt neutrophils to extrude stringy DNA webs known as neutrophil extracellular traps (NETs) that help the cancer invade other tissues, according to a paper published today (October 19) in Science Translational Medicine. But DNA-degrading nanoparticles can effectively tear down these NETs in mice with cancer, thereby curbing metastasis, the researchers found.

The study shows “that aggressive metastatic cells from breast cancer have this ability to induce a particular function of neutrophils, which is the production of NETs,” said cancer biologist Ilaria Malanchi of the Francis Crick Institute in London who was not involved in the work. “But the more exciting part of the work is that they found a strategy to target this pro-metastatic activity of neutrophils,” she added. “More research is always needed to see if this will help cancer patients, but in mice it’s looking pretty good. It raises hope.”

Neutrophils, the most abundant type of white blood cell, are innate immune cells and the first line of defense against infection. But in terms of cancer research, these cells have received considerably less attention ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH