Nuclear Cartography

Techniques for mapping chromosome conformation

Written byJeffrey M. Perkel
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

MODELING DNA: Fluorescence in situ hybridization (FISH) in a mouse T cell nucleus shows the X chromosome in green and all other chromosomes in blue (inset); a 3-D model of the mouse X chromosome from single-cell Hi-C data (right). COURTESY OF TAKASHI NAGANO AND TIM STEVENSA Google image search for “chromosomes” gets you thousands of pictures showing condensed, X-shaped mitotic chromosomes. There’s just one problem with those images, says Peter Fraser, head of the Nuclear Dynamics Programme at the Babraham Institute in Cambridge, U.K.: “That’s really not very characteristic of what your genome looks like in your cells.”

Most cells, Fraser says, are not dividing, and their genetic material is relatively loosely coiled. But that doesn’t mean it’s randomly strewn about. The nucleus in general and chromosomes in particular are highly regimented, with DNA domains folding and looping into dynamic structures that vary over time as cellular state changes.

Chromosome structure has a profound effect on cellular biology, with regulatory elements needing to form great genetic arcs to reach promoters located hundreds of kilobases away. On a larger scale, groups of genes and their regulatory elements assemble into domains measuring about a megabase apiece. These domains appear to serve as the structural units of chromosomes, and though physically distinct, they can interact with one another over large distances, leading to even more complex ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH