Oceanic Bacteria Trap Vast Amounts of Light Without Chlorophyll

Microbes that dwell in nutrient-poor waters use a photopigment called retinal to harvest energy from sunshine at levels at least equal to those stored by chlorophyll-based systems.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: The sun over the Mediterranean Sea during the seawater sampling cruise
JOSEP M. GASOL

For years, scientists have thought that microorganisms that use chlorophyll capture the majority of solar energy in the ocean. In study published this week (August 7) in Science Advances, researchers show that bacteria with proteorhodopsins—proteins that capture light with a pigment called retinal—play a major role in converting light to energy, especially in parts of the ocean where nutrients are scarce.

“Chlorophyll is a big deal in the ocean, and now we’re showing that this other pigment is just as important,” says University of Southern California biologist Laura Gómez-Consarnau, a coauthor of the new study.

About 20 years ago, researchers discovered proteorhodopsins, which use light to pump protons out of the cell and thus generate energy as they flow back in, in ocean-dwelling bacteria. In 2007, Gómez-Consarnau and colleagues showed that bacteria could use that energy ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform