Oocytes and Obesity

Eggs from excessively overweight mothers suffer mitochondrial damage that can be averted with pharmacological intervention, a mouse study finds.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, MAGGIE BARTLETT/NHGRIObesity damages females’ developing oocytes even before they are fertilized, according to a mouse study published today (February 10) in Development. Eggs from obese mothers had mitochondrial defects, and the resulting offspring had fewer mitochondria than controls in liver and kidney tissue, indicating that during development, the mitochondria had failed to propagate.

“We now have information that health prior to conception is affecting the nutritional environment of the ovary, [that] it’s affecting the nutritional environment of the egg, and that signals are stored in that egg before it’s even fertilized,” said the University of Adelaide’s Rebecca Robker, who led the research. “And those get carried on into the embryo and are now showing into the offspring.”

The researchers also reported that they were able to reverse these problems using inhibitors of what’s called endoplasmic reticulum (ER) stress—protein-processing problems in the ER that initiate a cascade of other cellular issues, include mitochondrial defects—suggesting both an explanation for the oocyte damage and a possible treatment.

Obesity is associated with infertility in humans, leading obese women to often turn to ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Explore a Concise Guide to Optimizing Viral Transduction

A Visual Guide to Lentiviral Gene Delivery

Takara Bio
Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio