Opinion: Develop Organoids, Not Chimeras, for Transplantation

Scientists are devising human-animal hybrids for harvesting human organs, but lab-derived mini-organs are a less ethically fraught solution to meeting the need for transplantation.

Written byJohn D. Loike and Robert Pollack
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

R

ecent studies have shown that even though about 50 percent of adults in the United States have registered as organ donors, more than 100,000 people in the United States are waiting for a transplant, and many will die waiting. The increasing scarcity of human organ donors has driven research scientists to examine options other than donation from deceased patients, such as xenotransplantation, or the use of human organs that were grown in animals.

Xenotransplantation experiments are being conducted in sheep, pigs, and, most recently, in nonhuman primates. In July, a group of scientists from Spain and the US claimed to have successfully created embryos containing both monkey and human cells as a preliminary step in examining the use of such human-monkey chimeras as hosts to produce human organs. According to published reports, the research was conducted in China “to avoid legal issues.

Xenotransplantation experiments rely on applying gene editing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • John Loike

    John Loike serves as the interim director of bioethics at New York Medical College and as a professor of biology at Touro University. He served previously as the codirector for graduate studies in the Department of Physiology Cellular Biophysics and director of Special Programs in the Center for Bioethics at Columbia University College of Physicians and Surgeons. His biomedical research focuses on how human white blood cells combat infections and cancer. Loike lectures internationally on emerging topics in bioethics, organizes international conferences, and has published more than 150 papers and abstracts in the areas of immunology, cancer, and bioethics. He earned his Ph.D. from the Albert Einstein College of Medicine of Yeshiva University.

    View Full Profile
  • The Scientist Placeholder Image
    This person does not yet have a bio.View Full Profile

Published In

October 2019

Brain Fog

Air Pollution May Cause Cognitive Decline

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH