Opinion: Scientists Need to Demand Better Antibody Validation

My lab has developed a protocol to easily assess the specificity of antibodies—and hopefully stem some of the reproducibility crisis.

Written byPeter S. McPherson
| 3 min read
antibody validation reproducibility crisis C9ORF72

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Antibody labeling of C9ORF72 in the mouse brain
FROM FIGURE 5, C. LAFLAMME ET AL., ELIFE, 8:E48363, 2019

Medical science has a problem, and everyone knows it.

Imagine driving a car with a navigation system that is right just half the time, or doing math with a calculator that knows only half the multiplication table. It’s simply not rational, yet scientists are doing something similar when we use antibodies in research.

When correctly applied, antibodies are stunningly accurate. They can detect one protein out of tens of thousands in a sample.

The problem is that many, perhaps more than half of commercially available antibodies, do not target the protein their manufacturers claim they do, or they recognize the intended target but also cross-react with non-intended targets.

As we worked on our C9ORF72 paper, it became less about one gene and more about a template other labs can use to validate ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH