Opinion: Translational Biotechnology

Regulators must consider both the promise and potential pitfalls of new technologies when determining whether to move them into clinical trials.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

WIKIMEDIA, FRIBBIWhat’s known as translational research can be divided into two stages. The first stage—“from bench to bedside”—aims to validate the effectiveness of a drug or biotechnology in the clinic. The second aims to validate the efficacy and safety of the clinical application of the technology in everyday medicine. The U.S. Food and Drug Administration’s role in this process is to ensure the safe and ethical transformation of new drugs and biotechnologies into human clinical trials, and thereafter, into clinical practice.

As we reflect on the 30-plus years since the FDA approved human insulin created through the insertion of human DNA into E. coli, it is appropriate to reflect on whether the agency’s regulatory abilities have kept pace with the changing research landscape. It is also important to consider whether scientists and researchers clearly understand when it is ethical to move from testing a scientific concept in a Petri dish, to testing it in humans, and translating the technology into medical care. There are three major shifts or questions in the medical research landscape that may be obfuscating this process.

One shift is the increasing presence and role of biotechnology in medicine. Historically, medicines were derived largely from natural sources and well-known chemical compounds. Today, however, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • John Loike

    John D. Loike

    John Loike serves as the interim director of bioethics at New York Medical College and as a professor of biology at Touro University. His biomedical research focuses on how human white blood cells combat infections and cancer.
  • Jennifer E. Miller

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo