Out, Damned Mycoplasma!

Pointers for keeping your cell cultures free of mycoplasma contamination

Written byKelly Rae Chi
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

© DR. MICHAEL GABRIDGE/VISUALS UNLIMITED/CORBISMycoplasma are everywhere. Members of this genus of bacteria are the smallest free-living organisms able to self-replicate. In the 1950s, when mycoplasma were first isolated from cell cultures, contamination was found in 57–92 percent of lab-grown cells. Because the organisms lack a cell wall, they are resistant to common antibiotics, such as streptomycin and penicillin, and they easily slip through filters.

Even though scientists are now more aware of mycoplasma as possible contaminants, it is estimated that as much as 35 percent of the cell cultures currently used in research may be infected. It remains a common problem—especially in university labs, where trainees come and go, and cell lines freely change hands—partly because the bacteria are impossible to see using conventional microscopy. They also produce indirect, subtle effects on eukaryotic cells.

Bakhos Tannous, an associate professor of neurology at Harvard Medical School, says he “learned the hard way” about mycoplasma contamination in his cell-culture rooms years ago. Now the group tests routinely, so they were surprised when recent results came back positive. This time, however, the degradation of a bioluminescence reporter Tannous’s group was using in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies