Paleoproteomics Opens a Window into the Past

Researchers are looking to proteins to explore the biology of ancient organisms, from medieval humans all the way back to dinosaurs.

Written byCatherine Offord
| 13 min read

Register for free to listen to this article
Listen with Speechify
0:00
13:00
Share

SOMETHING TO CHEW ON: Proteins extracted from dinosaur fossils could offer unprecedented insight into these animals’ biology. Their ability to survive the test of time is hotly debated.© ISTOCK.COM/KICKERS

Elena Schroeter is accustomed to being economical with her samples. A postdoctoral researcher at North Carolina State University, Schroeter analyzes pieces of ancient bone that have been preserved in the ground for millions of years—and in doing so, destroys them. So her collaborators rarely give her more than a gram or two of material to work with. “People don’t want you to grind up their dinosaurs,” she explains. “You have to learn how to do a lot with a little.”

But even just a pinch of dinosaur bone dust could help reveal the ancient animal’s secrets. In one recent project, for example, Schroeter and her advisor Mary Schweitzer extracted and analyzed collagen peptides from just 200 mg of an 80-million-year-old fossil of a Cretaceous-era herbivore, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After undergraduate research with spiders at the University of Oxford and graduate research with ants at Princeton University, Catherine left arthropods and academia to become a science journalist. She has worked in various guises at The Scientist since 2016. As Senior Editor, she wrote articles for the online and print publications, and edited the magazine’s Notebook, Careers, and Bio Business sections. She reports on subjects ranging from cellular and molecular biology to research misconduct and science policy. Find more of her work at her website.

    View Full Profile

Published In

March 2018

The Transgender Brain

Researchers seek clues to the origins of gender dysphoria

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH