Promoting Protein Partnerships

Scientists generate new protein-protein interactions at an impressive PACE.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Since scientists began directing the evolution of proteins to obtain various desirable outcomes, the tools and techniques used to accomplish these goals have themselves evolved. One recent development, for example, is phage-assisted contin­uous evolution (PACE), which can generate desired protein variants in a fraction of the time it takes using traditional stepwise evolution methods.

A PERFECT MATCH: To evolve a strong binding affinity between a protein of interest (POI) and a desired target, the gene for the POI (fused to an RNA polymerase subunit) is first encoded into the genome of a bacteriophage lacking a gene (gene III) critical for robust infection of bacteria. These POI-containing viruses are then cultured with E. coli that contain gene III as well as the POI’s desired target (above).© GEORGE RETSECKInteraction between the POI and target results in recruitment of the E. coli RNA polymerase to the gene III promoter (black), which drives transcription (above). Thus, only those viruses whose POI evolves a strong binding affinity for the target will be able to drive gene III expression, continuously infect the E. coli, and survive.© GEORGE RETSECK

And now PACE, too, has evolved. Early examples of PACE were largely used to evolve DNA-binding proteins, which was all well and good, says Greg Weiss of the University of California, Irvine, but the latest incarnation of the technique—protein-binding PACE—is “easily the coolest demonstration of PACE to date.” The ability to evolve novel protein-protein interactions, Weiss explains, “brings the technology into the realm of . . . the therapeutics industry, diagnostics ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research