Protein Synthesis Enzymes Have Evolved Additional Jobs

Aminoacyl-tRNA synthetases, which help translate the genetic code into protein, also function in angiogenesis, fat metabolism, and more.

Written byAmber Dance
| 39 min read

Register for free to listen to this article
Listen with Speechify
0:00
39:00
Share

ABOVE: © science source, Hybrid Medical Animation

For as long as living things have been building proteins based on the code carried by messenger RNA molecules, aminoacyl-tRNA synthetases have been there. These enzymes, AARSs for short, link transfer RNAs (tRNAs) to the corresponding amino acids. That would seem to be a big enough job for one class of enzymes—and when protein-based life began, it was. But as organisms became more complex, AARSs picked up additional domains that allow them to do much more.

“By the time you get to humans, the synthetase has become highly decorated” with those additional domains, says Paul Schimmel, a Scripps Research Institute biochemist who studies these add-on jobs.

Living things possess at least one type of AARS molecule for each of the 20 proteinogenic amino acids. For some amino acids, there are two varieties, with a separate enzyme for use in protein translation that takes ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Amber Dance is an award-winning freelance science journalist based in Southern California. After earning a doctorate in biology, she re-trained in journalism as a way to engage her broad interest in science and share her enthusiasm with readers. She mainly writes about life sciences, but enjoys getting out of her comfort zone on occasion.

    View Full Profile

Published In

June 2020

An Infant's Bounty

Babies amass microbes that can pave the way to a healthy life

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control