Pushing the Limits

A guide to the newest techniques for examining epigenetics in single cells

| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

EPIGENETIC MARKS: Chemical modifications of DNA (methylation and hydroxymethylation) or of histone tails (methylation, acetylation, phosphorylation) contribute to the regulation of gene expression. THE SCIENTIST STAFF

Plummeting costs for sequencing technologies have made deciphering an organism’s genome nearly routine. However, not all cells exist in the quantity these methods require—typically a few thousand to a million cells. When looking at early embryogenesis, for example, researchers might have only a handful of cells to analyze.

Each cell becomes precious, explains Daniel Messerschmidt, a biochemist and principal investigator at the Institute of Molecular and Cell Biology, A*STAR Singapore. He and his colleagues wanted to explain the mechanism behind their supposedly genetically identical mutant mouse embryos’ strange phenotypic diversity. The reason wasn’t written in the DNA sequences, they suspected, but in epigenetic marks that modify gene expression. But with so few cells, “we had no way to show it,” he says. They needed a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo