Regular HIIT Exercise Enhances Health via Histamine

Men given high doses of two antihistamine drugs did not experience the same benefits of high intensity interval training that men on a placebo enjoyed, revealing some of the molecular underpinnings of exercise’s effect.

Written byRachael Moeller Gorman
| 4 min read
hiit high intensity interval training exercise histamine receptor fexofenadine ranitidine famotidine h1 h2 receptor

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: Participants in the exercise study
THIBAUX VAN DER STEDE

Whether you’re peddling a bike, running on a treadmill, or hiking in the woods, regular aerobic exercise powerfully protects you from cardiovascular and metabolic disease. But the precise molecular mechanisms connecting regular activity to improved health have been unclear. A study published April 14 in Science Advances makes major gains in this understanding. Building off previous work on single bouts of exercise, researchers at Ghent University in Belgium found that when humans perform long-term training, histamine receptors are activated, improving a variety of cardiometabolic risk factors, from insulin sensitivity to aerobic capacity and blood vessel health.

“It’s awesome, it’s a very cool paper,” says University of Oregon exercise physiologist John Halliwill, who was not involved in the study. “This is one of a few studies out there finally looking at these molecular transducers, and this is the only one out there ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • After earning a bachelor’s degree in biology and neuroscience from Williams College, Rachael spent two years studying the tiny C. elegans worm as a lab tech at Massachusetts General Hospital/Harvard University. She then returned to school to get a master’s degree in environmental studies from Brown University, and subsequently worked as an intern at Scientific AmericanDiscover magazine, and the Annals of Improbable Research, the originators of the yearly Ig Nobel prizes. She now freelances for both scientific and lay publications, and loves telling the stories behind the science. Find her at rachaelgorman.com or on Instagram @rachaelmoellergorman.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH